Summary of the derivatives and their uses:

Function	Use
$f(x)$	- To find points on the curve/existence of points on the curve - Verify that the graph is continuous (has no breaks) - If the graph is not continuous, can determine these values and said values will be critical numbers
$f^{\prime}(x)$	- Use typically to show increasing and decreasing. - If $f^{\prime}(x)=0$, and is solved for x, these will be some of the critical numbers. - With the critical numbers, can create an interval. With this interval, choose a test value (say c) between the critical numbers to substitute into $f^{\prime}(x)$. If $f^{\prime}(c)>0$ (positive) then the original function, $f(x)$, will be increasing between the critical numbers for which c was picked. If $f^{\prime}(c)<0$ (negative) then the original function, $f(x)$, will be increasing between the critical numbers for which c was picked. First Derivative Test: If the original function, $f(x)$, switches from increasing to decreasing at a critical point, then it will be a local max. If the original function, $f(x)$, switches from decreasing to increasing at a critical point, then it will be a local min.
$f^{\prime \prime}(x)$	- If $f^{\prime \prime}(x)=0$ and is solved for x, these are potential points of inflection (where the concavity changes). To prove that they are indeed points of inflection, we need to look at the intervals of concavity - With the values from the first bullet, we can create intervals and take test values (a) between the potential points of inflection. If $f^{\prime \prime}(a)>0$ (positive) then the original function, $f(x)$, will be concave up (CCU) between the potential points of inflection for which a was picked. - If f " $(a)<0$ (negative) then the original function, $f(x)$, will be concave down (CCD) between the potential points of inflection (a) for which a was picked. - If the concavity switches at one of the potential points of inflection, it will indeed be a point of inflection. - Second Derivative Test: For a critical number c, if $f^{\prime \prime}(c)<0$, then there is a local max at $x=c$. If $f^{\prime \prime}(c)>0$, then there is a local min at $x=c$.

