Summary of the derivatives and their uses:

Function	Use
f(x)	- To find points on the curve/existence of points on the curve
	- Verify that the graph is continuous (has no breaks)
	- If the graph is not continuous, can determine these values and said
	values will be critical numbers
f'(x)	- Use typically to show <i>increasing</i> and <i>decreasing</i> .
	- If $f'(x) = 0$, and is solved for <i>x</i> , these will be some of the critical
	numbers.
	- With the critical numbers, can create an interval. With this interval,
	choose a test value (say c) between the critical numbers to
	substitute into $f'(x)$.
	- If $f'(c) > 0$ (positive) then the original function, $f(x)$, will be
	increasing between the critical numbers for which c was picked.
	- If $f'(c) < 0$ (negative) then the original function, $f(x)$, will be
	increasing between the critical numbers for which c was picked.
	- First Derivative Test: If the original function, $f(x)$, switches from
	increasing to decreasing at a critical point, then it will be a local
	<u>max</u> . If the original function, $f(x)$, switches from decreasing to
	increasing at a critical point, then it will be a local min.
f''(x)	- If $f''(x) = 0$ and is solved for x, these are <i>potential</i> points of
	inflection (where the concavity changes). To prove that they are
	indeed points of inflection, we need to look at the intervals of
	concavity
	- With the values from the first bullet, we can create intervals and
	take test values (a) between the potential points of inflection.
	- If $f''(a) > 0$ (positive) then the original function, $f(x)$, will be
	concave up (CCU) between the potential points of inflection for
	which <i>a</i> was picked.
	- If $f''(a) < 0$ (negative) then the original function, $f(x)$, will be
	concave down (CCD) between the potential points of inflection (<i>a</i>)
	for which <i>a</i> was picked.
	- If the concavity switches at one of the potential points of inflection,
	it will indeed be a point of inflection.
	- Second Derivative Test: For a <u>critical number</u> c , if $f''(c) < 0$, then
	there is a local max at $x = c$. If $f''(c) > 0$, then there is a local min at
	x = c.